路虎发现四柴油egr阀坏了什么现象_路虎发现4egr阀在哪
1.路虎揽胜柴油版EGR阀位置信号
2.06路虎发现3抬完油箱着车时偶尔一抖
把EGR阀从上面拆了,再拆涡轮,涡轮从下面拿出来。
路虎神行者2(Freelander 2)是路虎推出的一款SUV,路虎神行者2代(Freelander 2)在上一代路虎神行者的基础上从各方面都进行了重大的改进和升级,成功的结合了时尚豪华汽车和纯粹SUV所具有的优点。
神行者(Freelander 2)是路虎越野车家族中最年轻、最有活力的一员,它诞生在现代社会,却来自英国最传统的贵族家庭,肩负着带动整个车系与时尚接轨的使命。与路虎家族中的其他三位成员不同,路虎推出Freelander 2的目的就是为了适应人们对现代城市SUV的需求。
路虎揽胜柴油版EGR阀位置信号
“电子控制转向系统”的英文缩写是ECS,全称是electronic control steering system.
电子控制转向系统(electronic control steering system)传统汽车转向系统是机械系统,汽车的转向运动是由驾驶员操纵转向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。
20世纪50年代起,增加了液压助力系统(HPS,见动力转向系统),至今仍被广泛应用。由于电子技术的发展,汽车转向系统中越来越多地用电子部件,逐渐发展了电控液压动力转向、电动助力转向、前轮主动转向和线控转向等电子控制转向系统。
扩展资料:
分类:
电液助力转向可以分为两大类:
电动液压助力EHPS(Electro-HydraulicPowdrSteering),电控液压助力转向ECHP(ElectronicallyControlledHydraulicPowerSteering)。
EHPS是在液压助力系统基础上发展起来的,其特点是原来有发动机带动的液压助力泵改有电动机驱动,取代了又发动机驱动的方式,节省了燃油消耗,ECHPS是在传统的液压助力转向系统的基础上增加了电控装置构成的。电液助力转向系统的助力特性,是驾驶员能够更轻松更捷的操作汽车。
助力特性是指助力随汽车运动状况和受力状况(车速和转向盘手力)变化而变化的规律。对液压动力转向,助力与液压油压力成正比,故一般用液压力与转向盘力矩(及车速)的变化关系曲线来表示助力特性。
对于电动助力转向,助力与直流电动机电流成正比例,故可用电动机电流与转向盘力矩,车速的变化关系曲线来表示助力特性。理想的助力特性应能充分协调好转向轻便性与路感的关系,并提供给驾驶员与手动转向尽可能一致的,可空的转向特性。
在满足转向轻便性的条件下,如果路感强度在整个助力特性区域内不变,则驾驶员就能容易地判定汽车行驶状态的变化,预测出所需要的转向操作力矩的大小。直线型助力特性难以协调好转向轻便性,与路感的关系。
折线性助理特性是缓和这一矛盾的理想方法。理想助理特性是一种折线型助力特性,该特性曲线可以为直线行驶去,强路感区和轻便转向区。
直线行驶区对应无转向或转向角非常小地中心区域,此时要求助力大;强路感区介于二者之间。对应于这种助力特性的路干强度变化是阶跃式的。
在液动力转向系统中增加电子控制和执行组件,将车速(也有用车速和转向盘转速)引入到系统中,实现车速感应型助理特性液压动力转向。
这类系统成为电控液压助力转向系统。现代电控液压助力转向系统主要通过车速传感器将车速信号传递给电子控制单元(ECU),控制电液转换装置改变动力转向助力特性,使驾驶员的转向手力根据车速和行驶条件变化而改变。
在低速行驶时或转急弯时能以很小的转向手里进行操作,在高速行驶时能以稍重的转向手力进行稳定操作,使操纵轻便性和稳定性达到最合适的平衡状态。
百度百科-电子控制转向系统
06路虎发现3抬完油箱着车时偶尔一抖
EGR阀位置信号:0.98-4.67。
接头有五根线,电机用两线,其它三格都是SENSOR的,一个+5V,一个GND,一个就是传感器输出的电压信号,阀开度变化时,传感器电压相应变化,范围在0.98-4.67。
EGR阀废气再循环阀,揽胜该车装有排气再循环装置,egr系统工作时,将一部分废气再引入气缸中,降低气缸中的燃烧温度,以达到降低nox的排放目的。正常情况下,在怠速时,egr阀处于关闭状态,并不进行废气再循环。
EGR阀分机械式和电控式两种:
EGR阀通过将发动机燃烧排出的废气,引导至进气歧管参与燃烧来降低燃烧室温度,提高发动机工作效率改善燃烧环境、并降低发动机负担有效减少NO化合物的排放、减少爆震,延长各部件使用寿命。
一、故障可能的原因
(一)进气供给系统。
进气系统是电控喷油系统的一个重要组成部分。导致空气供给不准的故障主要有:
1、进气管及各种阀的泄漏,常见的有进气歧管破裂,进气岐管密封不良,真空管脱落,PCV阀/EGR阀关闭不严等。例如在正常情况下,怠速控制发的开度与进气量应严格遵循一定的函数关系,即怠速阀开大进气量就增加。当空气供给系漏气时,则进气量与怠速控制阀的开度不能遵循原函数关系,以至空气流量计不能准确的测出真实的进气量,导致发动机电控单元(ECU)获得的近气量信号不准而误判,造成发动机怠速不稳。
2、怠速空气通道与节气门积垢过多时,导致进气截面积发生变化,以至对怠速空气道控制失准,从而使进入气缸的空气量偏离正常值,造成混合气过浓或过稀,燃烧不正常,造成发动机怠速不稳。
3、控制怠速的传感器及其他电路失常。如怠速开关不能闭合时,ECU错误判定发动机处于部分负荷,造成进气量控制错误;怠速阀由于油污,积碳而动作滞后或发卡,节气门关闭不严等都会造成ECU无法对发动机进行真确的怠速调节,另外进气温度传感器、空气流量传感器、水温传感器及传感器电路短路、断路都会造成发动机怠速不稳。
(二)点火系统。
点火系统不良主要是高压火弱或火花塞并不点火,直接影响了气缸燃烧,造成各缸功率不同,从而使发动机怠速不稳。具体表现为:
(1)次级电压低;(2)高压线漏电;(3)高压线短路或内阻大;(4)点火提前交不对;(5)火花塞积碳、烧失;(6)火花塞电极间隙不对;(7)点火线圈损坏或点火控制电路故障;(8)ECU故障。
(三)燃油系统。
会导至燃油系统供油不准的故障有:(1)喷油器泄漏或堵塞;(2)燃油机电器损坏;(3)燃油泵滤网堵、燃油泵安全阀弹簧弹力小或泵油压力不足;(4)燃油滤清器堵;(5)燃油压力调节器故障;(6)燃油油质差;(7)燃油管路变形。例如当喷油器雾化不良、滴漏时,相应缸的混合气混合不良,以至燃烧不良,各气缸功率不同,造成发动机怠速不稳。另外还会使氧传感器产生低电位信号,ECU会根据此信号加浓混合气,一但增加的燃油量超出了设定的调节极限,ECU就会误认为氧传感器故障并记录故障码 。
(四)机械部分。
(1)凸轮轴凸轮严重磨损,加之磨损不一致,至使各气缸功率不同;
(2)正时链条(带)松动或磨损,导至配气相位失准;
(3)气门相关部件失常,如气门推杆磨损、弯曲,奇门卡死、漏气,气门弹簧折断和气门密封件破坏等;
(4)气缸垫烧蚀或损坏;
(5)活塞环端隙过大,活塞环对口、断裂;
(6)气缸磨损过度。
(五)其他电路故障。
主要指与进气系统,燃油系统,点火系统等相关的电源电路或控制电路有接触不良的故障。通常会瞬间供油不足或点或不良。使各气缸内混合气燃烧不正常,从而至使各缸功率不同,如发动机ECU 搭铁不良,电源电压超过9-16V,都会引起发动机故障。
发动机怠速抖动不稳故障的检测步骤
1、起动发动机后,“检查发动机”警告灯是否熄灭。
2.1警告灯不熄灭的,根据故障码 检查故障原因和部位。
2.2 警告灯熄灭,确定怠速匹配设定。
3、检查是否缺缸,分缸线是否正确,接插件连接可靠。
4、检查怠速执行装置是否正常。
5、根据氧传感器信号电压判断怠速混合气过浓还是过稀。
6.1 过浓,检测系统油压和各传感器是否正常,检查活性炭罐是否工作正常,检查燃油系统执行器是否工作正常,检查点火系是否工作正常。
6.2过稀,检测点火系是否正常,检测系统油压,检查是否真空漏气,检测各传感器是否正常,检查喷油器、EGR阀、气缸压力是否正常。
7、检查发动机支架及缓冲橡胶垫是否损坏。
二、故障排除方法
通过对电控系统怠速不稳故障的各种原因分析,做以下检查:
1 进行断缸试验。
当拔掉1缸高压线时,发动机转速反而增加,拔掉4缸高压线时,发动机无明显反应,当拔下2、3缸高压线时,转速均有下降。拆下4只火花塞,发现1、4缸火花塞中心电极均有烧蚀,更换全部火花塞启动发动机,怠速略有好转。
2 检查进气系统。
没有发现有漏气现象,于是将怠速阀拆下来检查,并用清洗剂把怠速通道和阀清洗装回,试车,没有解决问题。考虑到发动机加速正常,加之用仪器没读出故障码 ,认为不可能是电路或ECU故障造成的,燃油系统也应该没有问题。
3 再次仔细分析该故障原因
还是认为是进气系统有多余的进气量才造成的。根据以往经验,是不是废气再循环阀出问题了。于是拔下废弃再循环阀上的真空管,发动机没有变化,便拆下废弃再循环阀,发现废弃再循环阀内有积垢,阀关闭不严,造成废气一直进入进气系统参与燃烧,致使发动机怠速不稳,更换新件试车,一切正常。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。